
Dynamic effects on the stretching of the magnetic field by a plasma flow

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 8903

(http://iopscience.iop.org/0305-4470/36/33/312)

Download details:

IP Address: 171.66.16.86

The article was downloaded on 02/06/2010 at 16:29

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/33
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 8903–8911 PII: S0305-4470(03)62609-0

Dynamic effects on the stretching of the magnetic field
by a plasma flow

Manuel Núñez
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Abstract
A key mechanism in the growth of magnetic energy in kinematic dynamos is
the stretching of the magnetic field vector by making it point in an unstable
direction of the strain matrix. Our objective is to study whether this feature may
be maintained in an ideal plasma when also considering the back reaction of the
magnetic field upon the flow through the Lorentz force. Several effects occur: in
addition to the nonlocal ones exerted by the total pressure, a complex geometry
of magnetic field lines decreases the rate of growth of magnetic energy, rotation
of the flow enhances it and above all the rate of growth decreases with minus
the square of the eigenvalue associated with the magnetic field direction. Thus
local dynamics tend to rapidly quench the stretching of the field.

PACS numbers: 52.30.Cv, 47.32.−y, 05.45.−a, 91.25.Cw

1. Introduction

The physics of magnetic field growth in magnetohydrodynamic plasmas is well understood
at the kinematic level. That is, if we assume that the (incompressible) plasma flow is not
influenced by the magnetic field, the evolution of this is governed only by the induction
equation

∂B
∂t

= η�B − u · ∇B + B · ∇u (1)

where u represents the flow velocity, B represents the magnetic field and η represents the
resistivity or magnetic diffusivity, usually very small in the astrophysical problems to which
this theory is mostly applied. If we omit the diffusion (ideal plasmas), (1) may be written in
terms of the Lagrangian derivative

D

Dt
= ∂

∂t
+ u · ∇
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as
DB
Dt

= B · ∇u. (2)

From this it follows

1

2

DB2

Dt
= B · ∇u(B) = B · S(B) (3)

where S = (1/2)(∇u + (∇u)+) is the strain matrix (1/2)(∂iuj + ∂jui) and (· · ·)+ represents
the transposed matrix. Following the Einstein convention of summation on repeated indices,
the vector ∇u(B) is (∂iuj )Bi , the same as the directional derivative B · ∇u. S possesses
an orthogonal system of eigenvectors: its three (real) eigenvalues add to zero. Obviously,
the largest growth of magnetic energy along a streamline occurs when B aligns with the
eigenvector of largest eigenvalue, i.e. the most unstable direction of the flow. By integrating
(3) in a domain � such that u · n |∂�= 0, B · n |∂�= 0 (or in a periodic box), we obtain the
classical relation on the magnetic energy:

∂

∂t

1

2

∫
�

B2 dV =
∫

�

B · S(B) dV. (4)

Most models of kinematic dynamos tend to align B with the most unstable eigenvector of S. To
have a global exponential growth, we need the largest eigenvalue of S to be positive at least in a
set of positive measure in �. Since the transport of vectors by the flow also satisfies (2) (which
is the reason why magnetic field lines are carried as material points), this implies exponential
stretching of the flow, which is an indication of chaos. That the flow must be chaotic for an
exponentially growing magnetic field was proved rigorously in [1]. The problem is that such
flows tend to produce a magnetic field pointing in opposite directions in contiguous sheets
or ropes of the domain [2], so that when adding the diffusive term, dissipation of the energy
is intense. Thus kinematic dynamos also need constructive folding: the flow must be such
that the contribution of the field at nearby sheets does not cancel out. This is indeed the main
hurdle in constructing models of fast dynamos (see [3] and references therein).

While kinematic dynamos provide valuable insights, realistic dynamos must take into
account the full MHD system. This complex problem can only be studied analytically by
concentrating on particular aspects. We will consider for how long we can maintain a magnetic
field pointing approximately in an unstable direction of the flow, so that there is exponential
increase of the magnetic energy. There are reasons to feel optimistic about this, since the
vorticity in the Navier–Stokes equations also satisfies the induction equation and has been
found to have a tendency to align with the intermediate vector of the strain matrix. This was
pointed first in [4], confirmed numerically [5–8] and given a tentative kinematic explanation
[9, 10]. Some of these simulations seem to show that the vorticity points first to the largest
eigenvector, and as the turbulence develops, it points to the second largest one [4, 5, 8]. An
explanation of this phenomenon in terms of attracting points is given in [11]. However, it is
dangerous to extrapolate this to the magnetic field, since the Lorentz force imposes a forcing
absent in the vorticity case: indeed, we will find a different phenomenology.

Since we are dealing with a purely dynamic problem, we will ignore the actions of both
viscosity and resistivity and therefore deal with ideal plasmas. For these the MHD equations
may be written as

Du
Dt

= B · ∇B − ∇p∗ + g (5)

DB
Dt

= B · ∇u (6)
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where p∗ = p + (1/2)B2 is the total (kinetic plus magnetic) pressure, and g is a possible
forcing upon the momentum equation: forcings on the induction one are infrequent. We will
study the evolution of the rate of increase of the magnetic energy � = B · S(B), and in order to
consider more specifically the alignment of the field with the eigenvectors of S, the normalized
value � = �/B2 = b · S(b), where b = B/B is the unit magnetic field. Care must be taken
with the null points of B, where � ceases to be defined.

2. Evolution of the magnetic energy variation

As stated, let us define � = B · S(B). We will study the Lagrangian derivative of �. We have

D�

Dt
= DBi

Dt
Bj (∂iuj + ∂jui) +

1

2
BiBj

(
D

Dt
(∂iuj + ∂jui)

)

= Bk(∂kui)Bj (∂iuj + ∂jui) +
1

2
BiBj

(
∂i

∂uj

∂t
+ ∂j

∂ui

∂t

)

+
1

2
BiBj (uk∂k,iuj + uk∂k,jui). (7)

By using the induction equation on Bi and the momentum equation on ∂ui/∂t , we obtain

D�

Dt
= BjBk[(∂kui)(∂iuj ) + (∂kui)(∂jui)] +

1

2
BiBj (uk∂k,iuj + uk∂k,jui)

+
1

2
BiBj

[
∂i

(
−uk∂kuj + Bk∂kBj − 1

2
∂jB

2 − ∂jp + gj

)

+ ∂j

(
−uk∂kui + Bk∂kBi − 1

2
∂iB

2 − ∂ip + gi

)]
. (8)

After making the derivation in the third term and performing some cancellations, we find

D�

Dt
= BiBj (∂iuj )(∂juk) +

1

2
BiBj [(∂iBk)(∂kBj )

+ (∂jBk)(∂kBi) − 2(∂iBk)(∂jBk) − 2∂i,jp + ∂igj + ∂jgi] (9)

which, written in vectorial form, yields

D�

Dt
= |∇u(B)|2 − |∇B(B)|2 + B · (∇B)2(B) − B · P ′′(B) + B · 1

2
(∇g + (∇g)+)(B) (10)

where by P ′′ we understand the Hessian matrix of p: B · P ′′(B) = BiBj∂i,jp. Since

B · (∇B)2(B) = 1
2 B · ∇(B · ∇B2) − 1

2 B · (B2)′′(B) (11)

and taking into account the definition of p∗, denoting G = (1/2)(∇g + (∇g)+), the previous
equation may be written as

D�

Dt
= |∇u(B)|2 − |∇B(B)|2 +

1

2
B · ∇(B · ∇B2) − B · P ′′

∗ (B) + B · G(B). (12)

Notice that the integral of the term B · ∇(B · ∇B2) in � vanishes, so that the net contribution
of this term is zero. Since the integral of u · ∇� is also zero, (12) may be used to find the
second variation of the magnetic energy in �:

1

2

∂2

∂t2

∫
�

B2 dV =
∫

�

|∇u(B)|2 − |∇B(B)|2 − B · P ′′
∗ (B) + B · G(B) dV. (13)

All the terms in (12) act locally, i.e. depend only on the values of u, B and g in a neighbourhood
of the point under study except for the total pressure. This is the solution of the elliptic equation
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obtained by taking the divergence in (5):

�p∗ = ∂iBj∂jBi − ∂iuj ∂jui + ∇ · g. (14)

It is convenient to transform the independent term as a function of the strain matrix
S = (1/2)(∂iuj + ∂jui), the magnetic strain matrix T = (1/2)(∂iBj + ∂jBi), the vorticity of
the flow ω and the current density J. Since

�p∗ = Tr((∇B)2) − Tr((∇u)2) + ∇ · g (15)

where Tr denotes the trace, let us take the orthonormal basis {e1, e2, e3} formed by the
eigenvectors of S. Then

(∇u)(ei ) = Sei + 1
2ω × ei = λiei + 1

2ω × ei (16)

and therefore

(∇u)2(ei ) = λ2
i ei + S

(
1
2ω × ei

)
+ 1

2ω × λiei + 1
4ω × (ω × ei ). (17)

The second and third terms are orthogonal to ei . As for the fourth, since

[ω × (ω × ei )] · ei = −|ω × ei |2
we obtain

ei · (∇u)2(ei ) = λ2
i − 1

4 |ω × ei |2.
The sum of the squares of the three eigenvalues is the square of the norm ‖S‖2, given by

‖S‖2
2 =

∑
i,j

|∂iuj + ∂jui |2.

On the other hand, |ω × ei |2 is the sum of the squares of the components of ω in the remaining
vectors ej , ek; by adding all of them we find

Tr(∇u)2 = ‖S‖2
2 − 1

2 |ω|2. (18)

By performing the same calculation with the eigenvectors of T, we find the equation satisfied
by p∗:

�p∗ = ‖T ‖2
2 − 1

2 |J|2 − ‖S‖2
2 + 1

2 |ω|2 + ∇ · g (19)

which will be useful in determining the possible effect of the pressure term on �.
The term occurring in (12) has the form B · P ′′

∗ (B). Although we know the sum of the
three second derivatives of P ′′

∗ in any three orthonormal directions, we cannot know a priori
the contribution of each of them, and in particular the term above. This is obvious even in the
simplest example, harmonic functions: the behaviour in a particular direction depends upon the
values of the function at the whole boundary, and it cannot be determined locally. In our case
we should pose a whole boundary value or transmission problem, find the appropriate Green
function and express B · P ′′

∗ (B) as an integral. This is clearly impracticable, and therefore this
nonlocal term is the hardest to analyse. One thing we know for sure, which is that it cannot be
neglected: since the sum of the second derivatives obtained in (19) is apparently of the same
order as the first local terms occurring in (12), at least in some direction its effect is important
enough to modify the dynamics. We can see this more clearly by making a naive assumption:
if we are in the early stages of a dynamo, so that both B and ∇B are of lower order than ∇u,
we may omit the quartic terms on the field in (12). In the absence of forcing, and omitting the
pressure term, we find

D�

Dt
∼ |∇u(B)|2. (20)
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Since |�| = |B · ∇u(B)| � |B||∇u(B)|, we obtain approximately

D�

Dt
� |B|−2�2 (21)

which actually predicts a blow-up of �, as soon as the integral along the streamline of |B|−2

equals �(0)−1, which will happen rather quickly given that |B| is small. This is physically
absurd, and emphasizes the important role of the pressure in damping local instabilities. Since
in the next section we will obtain a result stating that exponential growth of the field is itself
damped by the local terms, we may expect that the effect of the pressure is not so important
in this situation.

3. The local dynamics of magnetic field stretching

In ideal MHD, streamlines such that B does not vanish at any point have the same property
through time. Let us take one of these and define the unit magnetic field as b = B/B. The
magnitude

� = �/B2 = B · S(b) (22)

does not represent the rate of increase of magnetic energy as before, but the efficiency of the
magnetic field direction to increase magnetic energy by pointing in an appropriate direction.
As stated in the introduction, this is maximal when b is the unit vector of the strain matrix with
largest eigenvalue. We will study whether the MHD system allows this situation to continue
for long. Since obviously

D�

Dt
= 1

B2

D�

Dt
− �

1

B4

DB2

Dt
(23)

and

DB2

Dt
= 2B · DB

Dt
= 2� (24)

we have

D�

Dt
= 1

B2

D�

Dt
− 2�2. (25)

On the other hand, from (12) it follows

1

B2

D�

Dt
= |∇u(b)|2 − |∇B(b)|2 +

1

2B2
B · ∇(B · ∇B2) − b · P ′′

∗ (b) + b · G(b). (26)

Let us analyse the third term. We have

1

2B2
Bi∂i(Bj∂jB

2) = 1

2
Bi∂i

(
1

B2
Bj∂jB

2

)
− 1

2
BiBj (∂jB

2)∂i

(
1

B2

)

= 1

2
B · ∇

(
B · ∇B2

B2

)
+

1

2B4
(BiBj (∂iB

2)(∂jB
2))

= 1

2
B · ∇

(
B · ∇B2

B2

)
+

1

2B2
(b · ∇B2)2. (27)

Since

b · ∇B2

B
= 2b · ∇B(b) = 2b · T (b) (28)
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where we recall that T is the magnetic strain matrix; we find a rather symmetric form for the
equation describing the evolution of �:

D�

Dt
= −2(b · S(b))2 + |∇u(b)|2 + 2(b · T (b))2 − |∇B(b)|2

− b · P ′′
∗ (b) + b · G(b) +

1

2
B · ∇

(
B · ∇B2

B2

)
. (29)

The only discordant term is F = (1/2)B · ∇(B · ∇B2/B2). Any term of the form B · ∇φ

integrates to zero over �, so we could dismiss this term by saying that its net contribution is
zero. This is true (although it does not prevent F from having local important effects), provided
φ is smooth throughout �, whereas in our case there may exist points where the magnetic field
vanishes and the definition of φ becomes uncertain. However, φ remains bounded as long as
the size B of the magnetic field has directional derivatives at every direction, which certainly
happens in all the classical critical points. Although B is not usually differentiable, B decreases
at least like the distance to the critical point: nonalgebraic zeroes of B are quite unusual. The
critical set is in fact often formed by isolated points, or smooth curves or surfaces. If, as it
happens in these instances, the critical set is bounded by smooth surfaces approaching it while
keeping their area bounded, the use of Gauss’ theorem and standard approximation procedures
will convince us that indeed the mean of F is zero. Only an extremely complicated critical set
could change matter.

Let us return to (29). By the standard decomposition of a matrix into its symmetric and
antisymmetric parts, we get

|∇u(b)|2 = |S(b) + 1
2ω × b|2 = |S(b)|2 + 1

4 |ω × b|2 + S(b) · (ω × b) (30)

where as before ω represents the flow vorticity. Doing the same with the current density J,

|∇B(b)|2 = |T (b) + 1
2 J × b|2 = |T (b)|2 + 1

4 |J × b|2 + T (b) · (J × b). (31)

We may cast (29) in a form emphasizing the symmetric role of S and T:

D�

Dt
= −2(b · S(b))2 + |S(b)|2 + 1

4 |ω × b|2 + S(b) · (ω × b)

+ 2(b · T (b))2 − |T (b)|2 − 1
4 |J × b|2 − T (b) · (J × b)

+ F − b · P ′′
∗ (b) + b · G(b). (32)

This expression, however, is not very useful to estimate the contributions of the different terms.
Let us instead start from the formulae in (26) and (27) to study the local effects of the field:
since B = Bb, d/ds representing the differential along the arc length in the field line,

b · (∇B) = ∇B(b) = d

ds
(Bb) = dB

ds
b + Bκn (33)

where n is the normal vector to the field line and κ is its curvature. Therefore

|∇B(b)|2 =
(

dB

ds

)2

+ B2κ2

(34)
b · ∇B(b) = dB

ds
.

Therefore the whole second line of (32) may be substituted by(
dB

ds

)2

− B2κ2. (35)

This term may in principle have either sign, but for chaotic flows it is far more likely to be
negative. Since magnetic field lines are transported by the flow, they become rapidly extremely
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convoluted and their curvature is high in almost every point of them, whereas the variation of
the field size along the line is not large. Even for geometries with large field gradients, such
as the sheet or rope structures mentioned in the introduction, the largest variation is always
transversal to the field line: the lines lie within the sheets and the field varies slowly along
them. We may conclude that the contribution of the magnetic field gradient to the growth of
� is generally negative for the most interesting cases.

We have already discussed the difficulty of foreseeing the action of the nonlocal term
b · P ′′

∗ (b), which depends on the behaviour of velocity and field in the whole domain, not only
in a neighbourhood of the point. The role of p∗ is to balance the action of the kinetic and
magnetic forces to conserve the volume, and we could say in a vague way that the contribution
of this term is positive when the projection of these forces is concave along the magnetic field
line, and negative if convex. Obviously, the effect of b · G(b) depends on the forcing, and we
have already proved that the mean action of F is zero.

We are left with the local kinetic term −2(b · S(b))2 + |S(b)|2 + 1
4 |ω×b|2 +S(b) · (ω×b),

and we intend to study the efficiency with which it quenches magnetic field growth when
this points in any eigendirection of S, such as the most unstable one. We always have
|b · S(b)| � |S(b)|, but when b approaches any eigenvector of S with associated eigenvalue
λ, both tend to the same value |λ|, and S(b) · (ω × b) tends to zero. The term becomes

−λ2 + 1
4 |ω × b|2 = −�2 + 1

4 |ω × b|2. (36)

Thus the size of the eigenvalue has a negative influence on magnetic field growth: the larger
it is, the more rapidly it tends to decrease. If we were allowed to omit all the remaining terms,
the equation

D�

Dt
= −�2 (37)

would yield a decrease of the order of t−1, but this is too rough to be accurate. Leaving apart
the rest, we have a positive contribution (1/4)|ω × b|2, which is associated with the growth
of magnetic energy by rotation of the flow. Its effect is maximal when b is orthogonal to
the rotation axis, and vanishes when it is collinear with it: there are otherwise no preferred
directions. Since vorticity and magnetic field share many similarities (in fact they satisfy the
same equation in the absence of Lorentz force), one could be tempted to conclude that they
tend to become collinear and therefore the term tends to vanish. This view is reinforced by
the fact that a classical dynamo mechanism generates a magnetic field in the direction of the
rotation axis of the plasma flow, but it does not resist closer scrutiny. For one thing, when
both velocity and field are planar and depend only on the two plane coordinates, field and
vorticity are actually orthogonal all the time. No assumption about chaotic flow can help us:
in the absence of forcing (or when this is a potential field), the total energy of the plasma is
conserved, so that dynamo growth of the magnetic energy must be achieved at the expense of
the kinetic one. Thus we have reason to believe

d

dt

∫
�

u2 dV < 0. (38)

Since
1

2

d

dt

∫
�

u2 dV = −
∫

�

u · ∇u(u) dV +
∫

�

(∇ × (J × B)) · u dV (39)

and ∫
�

u · ∇u(u) dV = 1

2

∫
�

u · ∇u2 dV = 0 (40)
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we are left with the Lorentz force term. Provided one of the magnitudes u, B or J vanishes at
the boundary, this can be transformed:∫

�

(∇ × (J × B)) · u dV =
∫

�

(J × B) · ω dV = −
∫

�

(ω × B) · J dV. (41)

Therefore the variation of the kinetic energy may be bounded as follows:∣∣∣∣1

2

∫
�

u2 dV

∣∣∣∣ �
(∫

�

|ω × B|2 dV

)1/2 (∫
�

J 2 dV

)1/2

. (42)

Obviously, ω × b cannot be too small in the mean for the dynamo to act.

4. Conclusions

One of the standard processes to obtain exponential growth of the magnetic energy in kinematic
dynamos is to make the field point in the most unstable direction of the strain matrix; the
second requirement is to minimize diffusive loss by positive folding. We ignore this second
phenomenon by focusing on ideal plasmas, in order to study how this mechanism of magnetic
field growth by stretching fares when considering the effect of the Lorentz force upon the
flow, i.e. taking into account the whole MHD system. The main analysis tool is the equation
satisfied by the rate of growth of magnetic energy, as well as the equation of the growth
rate normalized to unit magnetic fields. The different terms affecting its evolution are the
following: first, those imposed by the forcing, about which naturally everything depends on
the nature of the independent term. Second, the action of the Hessian matrix of the total
pressure on the magnetic field. Since the pressure is a nonlocal quantity depending on the
global behaviour of velocity and magnetic field, this term depends upon the whole problem
including boundary conditions and therefore nothing much can be said a priori, except that as a
rule it cannot be neglected if we wish to avoid some absurd conclusions. Third is a fluctuating
term of mean zero, and fourth is the effect of the torsion of the magnetic field along the local
field line. This term, at least in chaotic flows, is most likely to be negative, thus decreasing the
growth rate. Finally, the local kinetic effects due to the velocity gradient. It is shown that when
the magnetic field lies near an eigenvector of the strain matrix, the square of the associated
eigenvalue detracts from field growth, which means that the more unstable the direction where
the field points, the more rapidly it tends to stabilize. There exists a positive contribution given
by the local rotation of the plasma at the point, but this term does not have preferred directions
of instability. The impression of the whole is that the flow tends to quench rapidly exponential
field growths by making the magnetic field point away from unstable eigenvectors. This is
in some contrast to the results of hydrodynamic turbulence, where it has been shown that the
vorticity tends to align with the intermediate eigenvector of the strain matrix.
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